PowerPhase, Dual N-Channel SO8FL 30 V. High Side 20 A / Low Side 26 A

Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- DC–DC Converters
- System Voltage Rails
- Point of Load

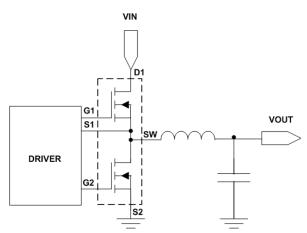
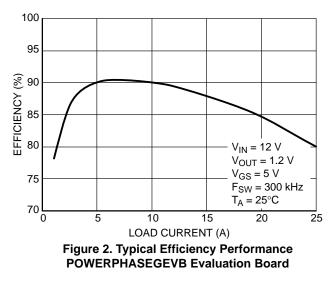
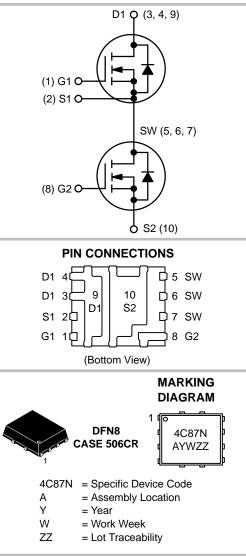



Figure 1. Typical Application Circuit



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	5.4 mΩ @ 10 V	20.4
30 V	8.1 mΩ @ 4.5 V	20 A
Q2 Bottom	3.1 mΩ @ 10 V	26 A
FET 30 V	4.3 mΩ @ 4.5 V	20 A

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit		
Drain-to-Source Voltage	Q1	V _{DSS}	30	V		
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage			Q1	V _{GS}	±20	V
Gate-to-Source Voltage			Q2			
Continuous Drain Current $R_{\theta JA}$ (Note 1)		T _A = 25°C	Q1	I _D	15.4	
		T _A = 85°C			11.1	
		T _A = 25°C	Q2		19.5	A
		T _A = 85°C			14.1	
Power Dissipation		T _A = 25°C	Q1	PD	1.89	W
R0JA (Note 1)			Q2			
Continuous Drain Current $R_{\theta JA} \le 10$ s (Note 1)		T _A = 25°C	Q1	I _D	21.0	
		T _A = 85°C			15.1	1.
	Steady	T _A = 25°C	Q2		26.6	A
	State	T _A = 85°C			19.2	
Power Dissipation		T _A = 25°C	Q1	PD	3.51	W
$R_{\theta JA} \leq 10 \text{ s} (\text{Note 1})$			Q2			
Continuous Drain Current		T _A = 25°C	Q1	I _D	11.7	
R _{θJA} (Note 2)		T _A = 85°C			8.5	Τ.
		T _A = 25°C	Q2		14.9	A
		T _A = 85°C			10.7	1
Power Dissipation		T _A = 25 °C	Q1	PD	1.10	W
R _{θJA} (Note 2)			Q2			
Pulsed Drain Current		$T_A = 25^{\circ}C$	Q1	I _{DM}	160	Α
		t _p = 10 μs	Q2		260	
Operating Junction and Storage Temperature		•	Q1	T _J , T _{STG}	-55 to +150	°C
	Q2					
Source Current (Body Diode)				ا _S	10	Α
	Q2		10			
Drain to Source DV/DT			-	dV/dt	6	V/ns
Single Pulse Drain-to-Source Avalanche Energy (T	Q1	EAS	20	mJ		
$V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V}, L = 0.1 \text{ mH}, R_G = 25 \Omega$		$I_L = 30 A_{pk}$	Q2	EAS	45	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		•		ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ extsf{ heta}JA}$	66.0	
Junction-to-Ambient - Steady State (Note 4)	R_{\thetaJA}	113.7	°C/W
Junction–to–Ambient – (t \leq 10 s) (Note 3)	R_{\thetaJA}	35.6	

Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Break-	Q1	M		250 4	30			V
down Voltage	Q2	V _{(BR)DSS}	$V_{GS} = 0 V,$	I _D = 250 μA	30			
Drain-to-Source Break- down Voltage Temperature	Q1	V _{(BR)DSS}				15.8		mV /
Coefficient	Q2	V _{(BR)DSS} / T _J				15.3		°C
Zero Gate Voltage Drain	Q1	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			1	
Current			$v_{\rm DS} = 24 v$	T _J = 125°C			10	μΑ
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			1	por a
Gate-to-Source Leakage	Q1	I _{GSS}	V _{GS} = 0 V, \	/DS = ±20 V			100	nA
Current	Q2						100	

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	Q1	V _{GS(TH)}	V _{GS} = VDS,	I _D = 250 μA	1.3		2.2	V
	Q2	1			1.3		2.2	V
Negative Threshold Temper-	Q1	V _{GS(TH)} / T _J				5.0		mV /
ature Coefficient	Q2	IJ				5.1		°C
Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		4.3	5.4	
ance			V _{GS} = 4.5 V	I _D = 18 A		6.5	8.1	
	Q2	1	V _{GS} = 10 V	I _D = 30 A		2.5	3.1	mΩ
			V _{GS} = 4.5 V	I _D = 30 A		3.4	4.3	

CAPACITANCES

Input Canaditanaa	Q1	0		1252	
Input Capacitance	Q2	C _{ISS}		1939	
Output Capacitance	Q1	C		610	pF
Oulput Capacitance	Q2	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V	1055	рг
Roverse Conscitones	Q1	C		129	
Reverse Capacitance	Q2	C _{RSS}		49	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

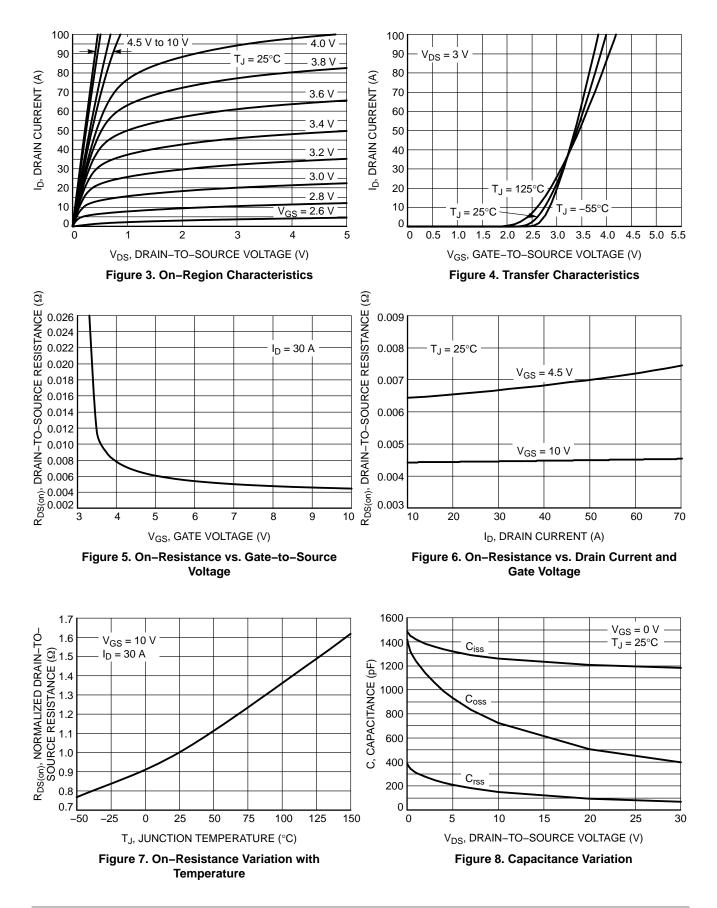
Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
CHARGES, CAPACITANCE	S & GATE	RESISTANC	E				
Total Oata Ohanna	Q1	0			10.9		
Total Gate Charge	Q2	Q _{G(TOT)}			13.8		
Threshold Cate Charge	Q1	0			1.2		
Threshold Gate Charge	Q2	Q _{G(TH)}			2.0		nC
Gate-to-Source Charge	Q1	0	V_{GS} = 4.5 V, V_{DS} = 15 V; I_{D} = 30 A		3.4		ne
Gale-10-Source Charge	Q2	Q _{GS}			5.5		
Gate-to-Drain Charge	Q1	Q _{GD}			5.4		
Gale-lo-Dialit Charge	Q2	QGD			3.6		
Total Gate Charge	Q1	0	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 30 A		22.2		nC
Total Gate Charge	Q2	Q _{G(TOT)}	$V_{GS} = 10 V$, $V_{DS} = 13 V$, $D = 30 A$		30.3		ne
Gate Resistance	Q1	R _G	R_G $T_A = 25^{\circ}C$		1.0		Ω
Gale Resistance	Q2				1.0		52
SWITCHING CHARACTERI	STICS (No	te 6)					
Turn–On Delay Time	Q1	tuan			8.9		
Tum-On Delay Time	Q2	t _{d(ON)}			10.6		
Rise Time	Q1	+			21.2		
Rise fille	Q2	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,		4.6		ns
Turn–Off Delay Time	Q1	t	$I_{\rm D} = 15 \text{A}, \text{R}_{\rm G} = 3.0 \Omega$		15.3		115
Turn-On Delay Time	Q2	t _{d(OFF)}			21		
Fall Time	Q1	t.			4.4		
	Q2	t _f			4.9		
SWITCHING CHARACTERI	STICS (No	te 6)					
Turn–On Delay Time	Q1	tuon			6.7		
	Q2	t _{d(ON)}			8.1		
Rise Time	Q1	t			19.5		
	Q2			15]	

Rise Time	Q	+		13.5	
Rise Time	Q2	۲	V_{GS} = 10 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω	15	ns
Turn–Off Delay Time	Q1	t	$I_{D} = 15 \text{ A}, \text{ R}_{G} = 3.0 \Omega$	20.1	115
Tum-On Delay Time	Q2	^t d(OFF)		26.2	
Fall Time	Q1	+		2.8	
	Q2	чf		3.1	

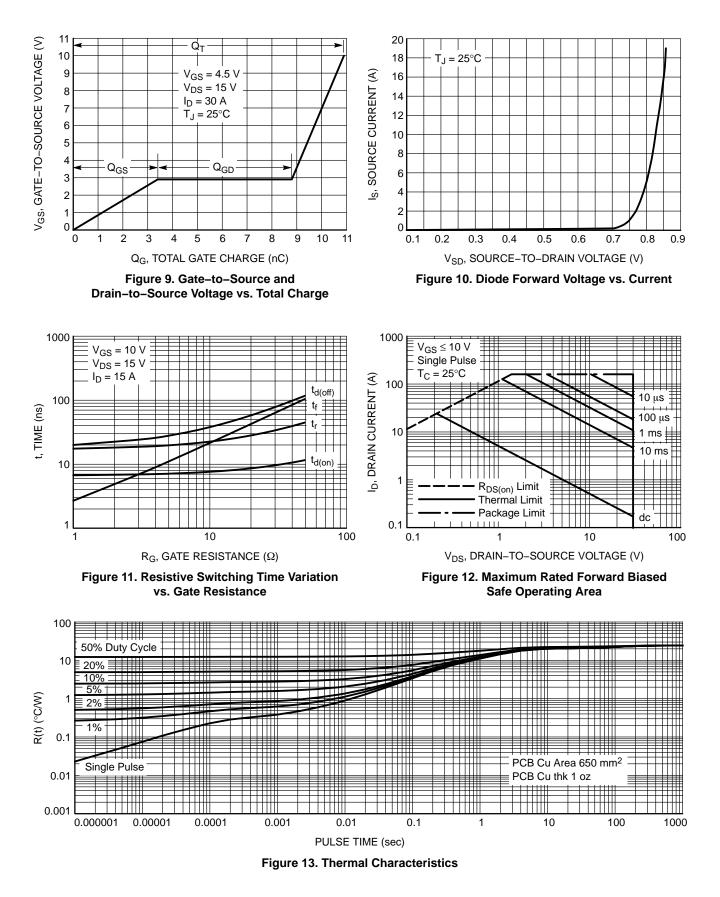
DRAIN-SOURCE DIODE CHARACTERISTICS

	Q1		V _{GS} = 0 V,	$T_J = 25^{\circ}C$	0.82	
	QI	M	I _S = 10 A	$T_J = 125^{\circ}C$	1.15	V
Forward Voltage	00	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	0.8	v
	Q2		I _S = 10 A	$T_J = 125^{\circ}C$	1.10	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

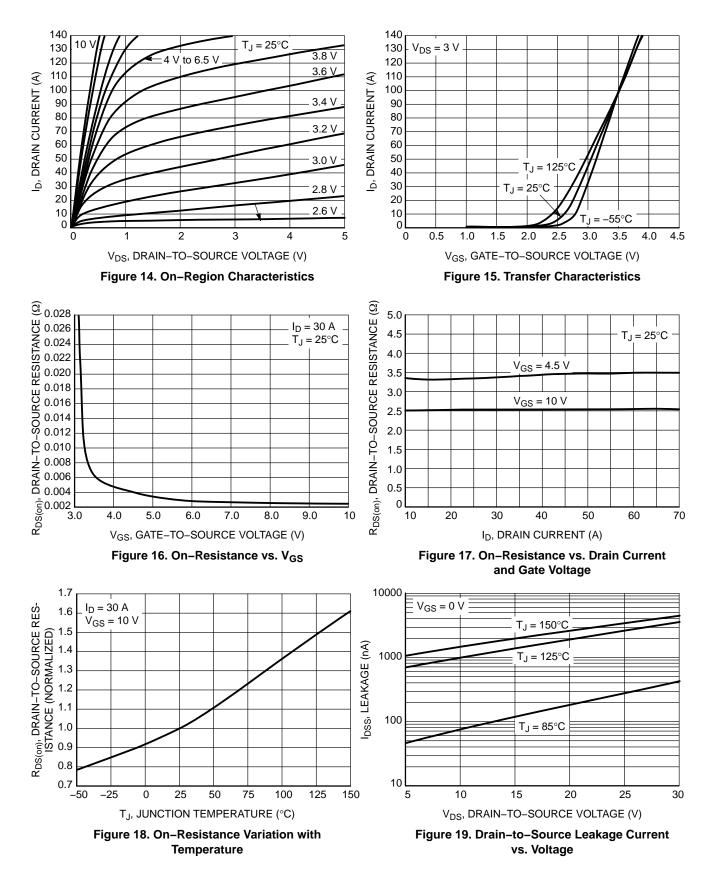

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CH	ARACTE	RISTICS						
	Q1				29.1			
Reverse Recovery Time	Q2	t _{RR}			40.2			
Charge Time	Q1	to			14.2			
Charge Time	Q2	ta			19.5		ns	
Discharge Time	Q1		th	$V_{GS} = 0 V, d_{IS}/d_t = 100 A/\mu s, I_S = 30 A$		14.6		
Discharge Time	Q2	tb			20.6			
Deverse Desevery Charge	Q1	0			21			
Reverse Recovery Charge	Q2	Q _{RR}			39		nC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS – Q1



TYPICAL CHARACTERISTICS – Q1

www.onsemi.com 7

TYPICAL CHARACTERISTICS – Q2

TYPICAL CHARACTERISTICS – Q2

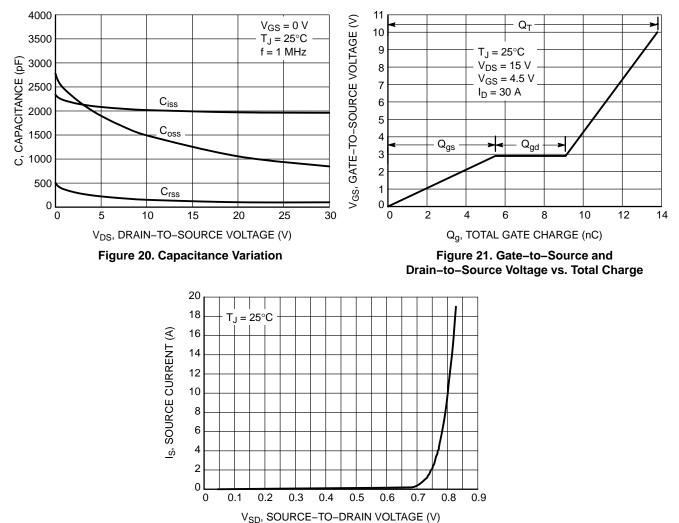


Figure 22. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS – Q2

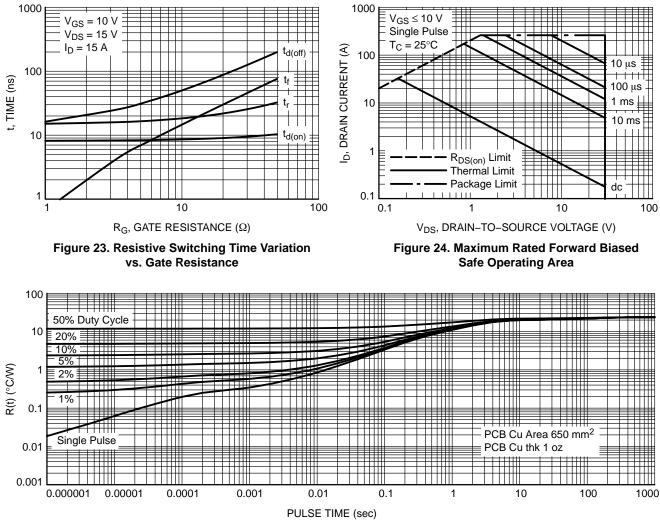
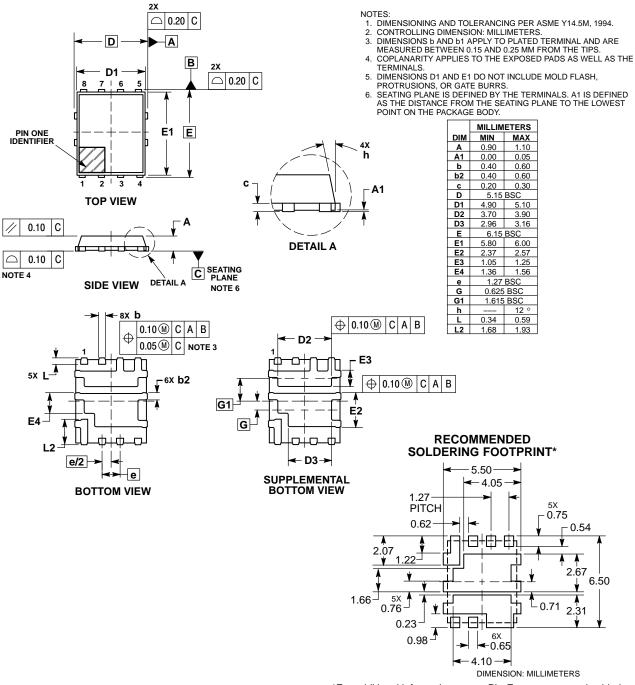


Figure 25. Thermal Characteristics

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFD4C87NT1G	DFN8 (Pb–Free)	1500 / Tape & Reel
NTMFD4C87NT3G	DFN8 (Pb–Free)	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DFN8 5x6, 1.27P PowerPhase FET

CASE 506CR ISSUE B

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the in are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product as here is and/or specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specification by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for reseale

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Midle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTMFD4C87N/D